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Let S be a compact Hausdorfl space. The space of continuous, real-valued
functions on § is denoted by C(S). This paper gives a counterexample for the
problem given by Franchetti and Cheney in (Franchetti and Cheney, in
“Approximation Theory and Its Applications,” Academic Press, New York, 1981;
Cheney, in “Approximation Theory IV.” Academic Press, New York, 1983). The
problem is as follows: If ¥ is a proximinal set in C(S), is it also proximinal in
C(Sx T} for arbitrary compact 77 ¢ 1937 Academic Press. Inc.

1. INTRODUCTION

In a normed linear space X, the distance from a point x to a subset Y
(# ) is defined by

dist(x, Y)=inf{|x— y|: ve Y}.

If an element y in Y satisfies || x — p|| =dist(x, Y), then y is called a best
approximation of x in Y. If each x € X has at least one best approximation
in Y, then Y is termed proximinal.

If A and Y are subsets of a Banach space X, then the Chebyshev radius
of A relative to Y is

ry(A)=inf sup {la— y|.

veY ae A

The Chebyshev center of A4 relative to Y is

Ef(A)={yeY:sup a—y|=ry4)}.

ae A

If Y=X, ry(4) and E,(A4) are written as r(4) and E(A) and termed the
Chebyshev radius and the Chebyshev center of A, respectively.
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An interval in C(S) is a set of the form

fa.b]={xeC(S)a<x<h}

where a and b are assumed to be bounded functions on S. An interval is of
type H1 if @, he C(S) and there exists a point s, such that a(s,) = b(s,). We
denote

(a v by=max(a(s), b(s))
{a A bYy=min(a(s), b(s)),

where a, b are arbitrary elements in C(S).

Franchetti and Cheney [ 1] showed that the Chebyshev center of any
bounded subset of C(S) is non-empty. Because of this, we want to know
whether E,(A4) is also non-empty, where Y is a proximinal subset in C(S)
and A is a bounded compact subset in C'(S). By [3], we can see that £,(A)
is non-empty if and only if Y is proximinal in C(Sx T) for each compact
Hausdorff space 7.

Franchetti and Cheney [3] show the following theorem:

THEOREM 1.1. Let S bhe a compact Hausdorff space and Y be a
proximinal subset of C(S). In order that 'Y be a proximinal subset of
C(Sx T) for every compact Hausdorff space T, it is necessary and sufficient
that dist(x, Y) attain its infimum on every interval X of type 1L

Thus, if we can find a4 proximinal set Y such that dist(x, ¥) does not

attain its infimum for some X = [u, v], then we will have fimished our dis-
cussion.

2. SOME LEMMAS

In order to construct the counterexample, we give some preliminary
lemmas.

LEMMA 2.1. Let ue C(S), ve C(S8), and u<v. Let G be a proximinal set
in C(S). Put d(x)=dist(x, G) and d = inf{d(x): u<x<v}. In order that this
infimum be attained by an x in [u, v] it is necessary and sufficient that
G lu—d, v+d] be non-empty.

Proof. Let u<x<v and dist(x, G)=d. There is a geG such that
ix —~ gl =dist(x, G). Then —d < g—x<d, and hence

H—d<x—d<g<x+d<v+d

Hence g Gnu—d, v+d].
Now suppose that G n [u—d, v+ d] is non-empty. Let g be an element
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of this set. Define x=(gv u)Av. Clearly x<v. For each s, ecither
x(s)=u(s) or x(s) <wv(s). In the first case x(s) = u(s) since u(s) < v(s). In the
second case x(s)=(g v u)(s)=>u(s). Hence x > u. Now
(x—g)s)=[(g v u)—glls) A (v—g)s)
=LOVv@—ghnrw—gJs)<0v (u—gls)<d

Also Oviu—g)s)=20= —d, and (v—g)s)= —d Therefore
[Ov (u—g)A(t—g)J(s)= —d and (x— g)(s)= —d. This proves that
—d<x— g<d and that |x— g| €d Thus the infimum defining d(x) is
attained at x.

Lemma 2.2, For any constant ¢, the set V= {fe C(S): min,_; f(s)<c}
is proximinal in C(S).

Proof. Assume re C(S\V. Let f(s)=1t(s)—min, /{s)+c¢. Obviously,
fe V and 7 is a best approximation of 7 in V. In fact, for any k e V, suppose
k(s,)y=min, k(s). Then

fr =Kl = t(s0) — k(s) = min 1(s) — ¢ = ||/ — 1.
Indeed,
lf—tl <\t — K| forall keKk.

Therefore the lemma is true.
Let S = [0, 1], 4 = {{},V = {ge C(S): min, g(s) < —~4}, B =
{gek=1,2..}, where

1
s Skt Ds+l4g 0<s<

gils) = |
(0, Z§s<1 (see Fig. 1).

PuuG=4A0uVuUB.
LeMma 2.3, The G defined above is a proximinal subset in C(S).

Proof. We divide our proof into the following cases:

f=0.
There exists s, such that f(s,) < — 4.
0 # /> —{ and there exists s, such that f(sq)= — | /1.

0 # /> —{ and there exists s, such that f(s) = ||/} < L
0 £ f> — 1} and there exists s, such that f(so)= | /] > L

wok e =
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In the first case, obviously g(s) =} is a best approximation of f in G. In the
second case, it is trivial, for f belongs to G. In case 3, since f(s,)=

—1Ifl > =& we have || f|| <& Therefore | g, (1)~ f(1)| =], for every k > 1.
Hence the best approximation of f in ¢ must be found in 4 U V. In the
fourth case, because of | f] <3, we thus have | g,(1)—f(1)>] for every

k=1 Hence each g, is not a best approximation of f for | fls)—4 <
L+i=1<3 when f(s)<0 (Noticing f(s)> —3) [f(s) =} <i—i=3<4
when f(s)>0.

Therefore the best approximation of f can be found in AU V.
In case 5. since f is a continuous function and f(s,) > § there must exist
a point s, > s, such that f(s,)> 4. Hence there exists an integer N such that
gi(5,)=0 forall k=N
Therefore
forall k=N

roA—

1= gell = fls))>

But
() — &l <§+i=13 when  f(s)<0,
Lf(s) =4 <fl(so)—§<f(5,)  when f(s=0

These imply that || f — || <l g, — /|l for all k= N. Thus we can find a best
approximation in AU VU {g. k=12, N—1}.
3. MAIN RESULT

Now we give a counterexample for the problem. Let v{s) =1 —s, u(s) =0.
(See Fig. 2.) Then [u, v] 1s an interval of type II.
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Since g, € G, we have dist(G, [u, v]) <dist( g, [4, v]) for all positive
integers k. But we know lim, . dist(g,, [4, v])=0, from which we have

dist(G, [u, v])=0.

According to the construction of G, there is no ge G such that ge [u, v].

By using Lemma 2.1 we know that dist(G, [«, v]) cannot attain its
infimum. Since G is a proximinal subset in C(S) (see Lemma 2.3), from
Theorem 1.1 we can see that there must exist a compact Hausdorff space T
such that G is not proximinal in C(Sx T).
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