JOURNAL OF APPROXIMATION THEORY 51, 93-97 (1987)

A Counterexample on Global Chebyshev Approximation

GUOHUI FENG

Applied Mathematics Department, Zhejiang University, Hangzhou, People's Republic of China

Communicated by E. W. Cheney

Received November 11, 1984

Let S be a compact Hausdorff space. The space of continuous, real-valued functions on S is denoted by C(S). This paper gives a counterexample for the problem given by Franchetti and Cheney in (Franchetti and Cheney, *in* "Approximation Theory and Its Applications," Academic Press, New York, 1981; Cheney, *in* "Approximation Theory IV," Academic Press, New York, 1983). The problem is as follows: If Y is a proximinal set in C(S), is it also proximinal in $C(S \times T)$ for arbitrary compact T? — C 1987 Academic Press, Inc.

1. INTRODUCTION

In a normed linear space X, the distance from a point x to a subset Y $(\neq \emptyset)$ is defined by

dist
$$(x, Y) = \inf\{ ||x - y|| : y \in Y \}.$$

If an element y in Y satisfies ||x - y|| = dist(x, Y), then y is called a best approximation of x in Y. If each $x \in X$ has at least one best approximation in Y, then Y is termed proximinal.

If A and Y are subsets of a Banach space X, then the Chebyshev radius of A relative to Y is

$$r_Y(A) = \inf_{y \in Y} \sup_{a \in A} ||a - y||.$$

The Chebyshev center of A relative to Y is

$$E_{Y}(A) = \{ y \in Y : \sup_{a \in A} ||a - y|| = r_{Y}(A) \}.$$

If Y = X, $r_Y(A)$ and $E_Y(A)$ are written as r(A) and E(A) and termed the Chebyshev radius and the Chebyshev center of A, respectively.

An interval in C(S) is a set of the form

$$[a, b] = \{x \in C(S) : a \leq x \leq b\}$$

where a and b are assumed to be bounded functions on S. An interval is of type II if $a, b \in C(S)$ and there exists a point s_0 such that $a(s_0) = b(s_0)$. We denote

$$(a \lor b) = \max(a(s), b(s))$$
$$(a \land b) = \min(a(s), b(s)),$$

where a, b are arbitrary elements in C(S).

Franchetti and Cheney [1] showed that the Chebyshev center of any bounded subset of C(S) is non-empty. Because of this, we want to know whether $E_Y(A)$ is also non-empty, where Y is a proximinal subset in C(S) and A is a bounded compact subset in C(S). By [3], we can see that $E_Y(A)$ is non-empty if and only if Y is proximinal in $C(S \times T)$ for each compact Hausdorff space T.

Franchetti and Cheney [3] show the following theorem:

THEOREM 1.1. Let S be a compact Hausdorff space and Y be a proximinal subset of C(S). In order that Y be a proximinal subset of $C(S \times T)$ for every compact Hausdorff space T, it is necessary and sufficient that dist(x, Y) attain its infimum on every interval X of type II.

Thus, if we can find a proximinal set Y such that dist(x, Y) does not attain its infimum for some X = [u, v], then we will have finished our discussion.

2. Some Lemmas

In order to construct the counterexample, we give some preliminary lemmas.

LEMMA 2.1. Let $u \in C(S)$, $v \in C(S)$, and $u \leq v$. Let G be a proximinal set in C(S). Put d(x) = dist(x, G) and $d = inf\{d(x): u \leq x \leq v\}$. In order that this infimum be attained by an x in [u, v] it is necessary and sufficient that $G \cap [u - d, v + d]$ be non-empty.

Proof. Let $u \le x \le v$ and dist(x, G) = d. There is a $g \in G$ such that ||x - g|| = dist(x, G). Then $-d \le g - x \le d$, and hence

$$u - d \leqslant x - d \leqslant g \leqslant x + d \leqslant v + d.$$

Hence $g \in G \cap [u - d, v + d]$.

Now suppose that $G \cap [u - d, v + d]$ is non-empty. Let g be an element

94

of this set. Define $x = (g \lor u) \land v$. Clearly $x \le v$. For each *s*, either x(s) = v(s) or x(s) < v(s). In the first case $x(s) \ge u(s)$ since $u(s) \le v(s)$. In the second case $x(s) = (g \lor u)(s) \ge u(s)$. Hence $x \ge u$. Now

$$(x-g)(s) = [(g \lor u) - g](s) \land (v-g)(s)$$

= [(0 \lor (u-g)) \lor (v-g)](s) \le 0 \lor (u-g)(s) \le d.

Also $0 \lor (u-g)(s) \ge 0 \ge -d$, and $(v-g)(s) \ge -d$. Therefore $[(0 \lor (u-g)) \land (v-g)](s) \ge -d$ and $(x-g)(s) \ge -d$. This proves that $-d \le x - g \le d$ and that $||x-g|| \le d$. Thus the infimum defining d(x) is attained at x.

LEMMA 2.2. For any constant c, the set $V = \{f \in C(S) : \min_{s \in S} f(s) \leq c\}$ is proximinal in C(S).

Proof. Assume $t \in C(S) \setminus V$. Let $\tilde{t}(s) = t(s) - \min_s t(s) + c$. Obviously, $\tilde{t} \in V$ and \tilde{t} is a best approximation of t in V. In fact, for any $k \in V$, suppose $k(s_0) = \min_s k(s)$. Then

$$||t-k|| \ge t(s_0) - k(s_0) \ge \min_{s} t(s) - c = ||t-t||.$$

Indeed,

$$\|\tilde{t} - t\| \leq \|t - k\| \quad \text{for all} \quad k \in K.$$

Therefore the lemma is true.

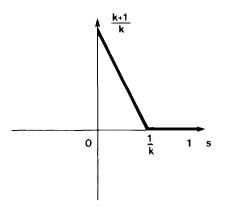
Let S = [0, 1], $A = \{\frac{1}{8}\}$, $V = \{g \in C(S): \min_{s} g(s) \leq -\frac{1}{8}\}$, $B = \{g_k: k = 1, 2, ...\}$, where

$$g_k(s) = \begin{cases} -(k+1)s + 1 + \frac{1}{k}, & 0 \le s \le \frac{1}{k}; \\ 0, & \frac{1}{k} \le s \le 1 \end{cases} \text{ (see Fig. 1).}$$

Put $G = A \cup V \cup B$.

LEMMA 2.3. The G defined above is a proximinal subset in C(S). Proof. We divide our proof into the following cases:

- 1. f = 0.
- 2. There exists s_0 such that $f(s_0) \leq -\frac{1}{8}$.
- 3. $0 \neq f > -\frac{1}{8}$ and there exists s_0 such that $f(s_0) = -\|f\|$.
- 4. $0 \neq f > -\frac{1}{8}$ and there exists s_0 such that $f(s_0) = ||f|| \leq \frac{1}{2}$.
- 5. $0 \neq f > -\frac{1}{8}$ and there exists s_0 such that $f(s_0) = ||f|| > \frac{1}{2}$.



In the first case, obviously $g(s) = \frac{1}{8}$ is a best approximation of f in G. In the second case, it is trivial, for f belongs to G. In case 3, since $f(s_0) = -\|f\| > -\frac{1}{8}$, we have $\|f\| < \frac{1}{8}$. Therefore $|g_k(1) - f(1)| \ge \frac{7}{8}$, for every $k \ge 1$. Hence the best approximation of f in G must be found in $A \cup V$. In the fourth case, because of $\|f\| \le \frac{1}{2}$, we thus have $|g_k(1) - f(1)| \ge \frac{1}{2}$ for every $k \ge 1$. Hence each g_k is *not* a best approximation of f, for $|f(s) - \frac{1}{8}| \le \frac{1}{8} + \frac{1}{8} = \frac{1}{4} < \frac{1}{2}$ when $f(s) \le 0$ (Noticing $f(s) > -\frac{1}{8}$) $|f(s) - \frac{1}{8}| \le \frac{1}{2} - \frac{1}{8} = \frac{3}{8} < \frac{1}{2}$ when f(s) > 0.

Therefore the best approximation of f can be found in $A \cup V$.

In case 5, since f is a continuous function and $f(s_0) > \frac{1}{2}$ there must exist a point $s_1 > s_0$ such that $f(s_1) > \frac{1}{2}$. Hence there exists an integer N such that

$$g_k(s_1) = 0$$
 for all $k \ge N$.

Therefore

$$||f - g_k|| \ge f(s_1) > \frac{1}{2}$$
 for all $k \ge N$.

But

$$|f(s) - \frac{1}{8}| \leq \frac{1}{8} + \frac{1}{8} = \frac{1}{4} \quad \text{when} \quad f(s) \leq 0,$$

$$|f(s) - \frac{1}{8}| \leq f(s_0) - \frac{1}{8} < f(s_1) \quad \text{when} \quad f(s \geq 0.$$

These imply that $||f - \frac{1}{8}|| < ||g_k - f||$ for all $k \ge N$. Thus we can find a best approximation in $A \cup V \cup \{g_k : k = 1, 2, ..., N - 1\}$.

3. MAIN RESULT

Now we give a counterexample for the problem. Let v(s) = 1 - s, u(s) = 0. (See Fig. 2.) Then [u, v] is an interval of type II.

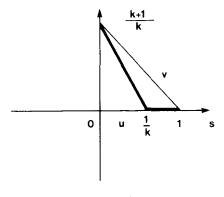


FIGURE 2

Since $g_k \in G$, we have dist $(G, [u, v]) \leq \text{dist}(g_k, [u, v])$ for all positive integers k. But we know $\lim_{k \to \infty} \text{dist}(g_k, [u, v]) = 0$, from which we have

 $\operatorname{dist}(G, [u, v]) = 0.$

According to the construction of G, there is no $g \in G$ such that $g \in [u, v]$.

By using Lemma 2.1 we know that dist(G, [u, v]) cannot attain its infimum. Since G is a proximinal subset in C(S) (see Lemma 2.3), from Theorem 1.1 we can see that there must exist a compact Hausdorff space T such that G is not proximinal in $C(S \times T)$.

ACKNOWLEDGMENTS

I am grateful to Professors Cheney and Franchetti for their constructive comments on my first draft.

References

- 1. C. FRANCHETTI AND E. W. CHENEY, Simultaneous approximation and restricted Chebyshev centers in function spaces, *in* "Approximation Theory and Its Applications" (E. Ziegler, Ed.), pp. 65–88, Academic Press, New York, 1981.
- 2. E. W. CHENEY, The best approximation of multivariate functions by combinations of unvariate ones, *in* "Approximation Theory IV," pp. 1–26, Academic Press, New York, 1983.
- 3. C. FRANCHETTI AND E. W. CHENEY, The embedding of proximal sets. preprint, June 1983; J. Approx. Theory, in press.
- 4. P. W. SMITH AND J. D. WARD, Restricted centers in $C(\Omega)$, Proc. Amer. Math. Soc. 48 (1975), 165–172.