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Let S be a compact Hausdorff space. The space of continuous, real-valued
functions on S is denoted by C( S). This paper givcs a counterexample for the
problem given by Franchetti and Cheney in (Franchetti and Cheney, in
"Approximation Theory and Its Applications," Academic Press, New York, 1981;
Cheney, in "Approximation Theory IV," Academic Prcss, New York, 1983). Thc
problem is as follows: If Y is a proximinal set in CIS), is it also proximinal in
CIS x T) for arbitrary compact T' (19X7 Academic Press. Inc

1. INTRODUCTION

In a normed linear space X, the distance from a point x to a subset Y
( # 0) is defined by

dist(x, Y)=inf{llx- yll: yE Y}.

If an element y in Y satisfies Ilx - yll = dist(x, Y), then y is called a best
approximation of x in Y. If each x E X has at least one best approximation
in Y, then Y is termed proximinal.

If A and Yare subsets of a Banach space X, then the Chebyshev radius
of A relative to Y is

ry(A)= inf sup Ila- yll.
rEYuEA

The Chebyshev center of A relative to Y is

E y(A) = {y E Y: sup Iia - yll = ry(A)}.
UEA

If Y = X, r y(A) and E y(A) are written as r(A) and E(A) and termed the
Chebyshev radius and the Chebyshev center of A, respectively.
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An interval in C( S) is a set of the form

[a, hJ = {XE CIS): a ~ :c:; h i

where a and h are assumed to be bounded functions on S. An interval is of
type II if a, hE C(S) and there exists a point So such that also) = h(so). We
denote

(a v h) = max(a(s), his))

(a 1\ h)=min(a(s),h(s)),

where a, h are arbitrary elements in C(S).

Franchetti and Cheney [I J showed that the Chebyshev center of any
bounded subset of C( S) is non-empty. Because of this, we want to know
whether E r(A) is also non-empty, where Y is a proximinal subset in CIS)
and A is a bounded compact subset in C( S). By [3]. we can see that E}( A)
is non-empty if and only if Y is proximinal in C( S x T) for each compact
Hausdorff space T.

Franchetti and Cheney [3J show the following theorem:

THEOREM 1.1. Let S he a compact Hausdorff space and Y he a
proximinal suhset of C( S). In order that Y he a proximinal suhset 0/
C( S x T) f(JI' every compact Hausdorff space T, it is necessary and sufficient
that dist(x, Y) attain its infimum on every interval X of type II.

Thus, if we can find a proximinal set Y such that dist(x, Y) does not
attain its infimum for some X = [u, I'J, then we will have finished our dis
cussIon.

2. SOME LEMMAS

In order to construct the counterexample, we give some preliminary
lemmas.

LEMMA 2.1. Let u E C( Sl, v E C( S), and u ~ v. Let G he a proximinal set
in CIS). Put d(x) = dist(x, G) and d = inl'{ d(x): u ~ x ~ v}. In order that this
infimum hc attained hy an x in [u,I'J it is ncccssarl' and sufficient that
G n [u - d, r + dJ hc non-empty.

Proof: Let u ~ x ~ v and dist(x, G) = d. There is agE G such that
!Ix - gil = dist(x, G). Then - d ~ g - x ~ d, and hence

Hence gEGn [u-d, v+d].
Now suppose that G n [u - d, v + dJ is non-empty. Let g be an element
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of this set. Define x = (g v u) /\ v. Clearly x::( v. For each s, either
x(s) = v(s) or x(s) < v(s). In the first case x(s) ~ u(s) since u(s)::( v(s). In the
second case x(s)=(g v u)(s)~u(s), Hence x~u. Now

(x - K)(s) = [( K v u) - g J(s) /\ (v - K)(S)

= [(0 v (u - g)) /\ (v - K)J(s)::( 0 v (u - g)(s)::( d.

Also Ov(u-g)(s)~O~-d, and (v-g)(s)~-d. Therefore
[(0 v (u - g)) /\ (1' - g)J(s) ~ -d and (x - g)(s) ~ -d. This proves that
-d::(o':-K::(d and that Ilx-KII::(d. Thus the infimum defining d(x) is
attained at x,

LEMMA 2,2, For any constant c, the set V = {f E C(S): min, E s f(s) ::( c}
is proximinal in C(S).

Proof Assume t E C( S)\ v. Let {(s) = t(s) - min, t(s) + c. Obviously,
{E Vand {is a best approximation of t in V. In fact, for any k E V, suppose
k(oloo) = min, k(s), Then

Ii t - kII ~ t(,I'o) - k(so) ~ min t(s) - c = II {- til·
s

Indeed,

II{-tll::( Iit-kil for all k E K.

Therefore the lemma is true,
Let S = [0, IJ, A = U}, V = {g E C(S): mm s g(s) ::( -- *}, B

{Kk: k = 1,2,... }, where

)
- (k + I )s + I + ~,

k
gk(S) = ~

\ 0,
I
-::( s::( 1 (see Fig. 1).
k

Put G = A u V u B.

LEMMA 2.3. The G defined above is a proximinal subset in C(S).

Proof We divide our proof into the following cases:

1. f= o.
2. There exists So such that f(so)::( -l
3, 0 i= f> - *and there exists So such that f(so) = - Ilfll.
4. 0 i= f> - *and there exists So such that f(so) = Ilfll ::( !.
5, 0 i= f> - *and there exists So such that f(so) = Ilfll >!.
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In the first case, obviously g(S) = ~ is a best approximation of fin G. In the
second case, it is trivial, for f belongs to G. In case 3, since f(so) =
- Ilfll > -~' we have II.fII < i- Therefore Igk( I) -f(l)1 ~~, for every k ~ 1.
Hence the best approximation of f in G must be found in A u V. In the
fourth case, because of II.fII ~ 1, we thus have Igk(l) -f(l) > 1 for every
k ~ l. Hence each gk is not a best approximation of f, for If(s) - ~I ~

k+~=*<1 when f(s)~O (Noticing f(s» -~) If(s)-~I ~1-~=~<1

when f(s) > O.
Therefore the best approximation of f can be found in A u V.
In case 5, since f is a continuous function and f(so) > 1there must exist

a points 1> So such that f(s 1) > 1- Hence there exists an integer N such that

Therefore

for all k? N.

But

Ilf- gkll ~ f(SI) > 1

If(s)-*I ~~+~=*
If(s) - ~I ~f(so) - i <f(sl)

for all k ~ N.

when f(s) ~ 0,

when f(s~ O.

These imply that Ill-ill < Ilgk-111 for all k~N. Thus we can find a best
approximation in Au Vu {gk: k = I, 2, ... , N - I}.

3. MAIN RESULT

Now we give a counterexample for the problem. Let v(s)= 1-.1', u(s)=O.
(See Fig. 2.) Then [u, vJ is an interval of type II.
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FIGLRE 2

Since gkEG, we have dist( G, [u, v]) :( dist( gb [u, v]) for all posItIve
integers k. But we know lim k ~ Cf: dist( gb [u, v]) = 0, from which we have

dist(G, [u, v])=O.

According to the construction of G, there is no g E G such that g E [u, v].
By using Lemma 2.1 we know that dist( G, [u, v]) cannot attain its

infimum. Since G is a proximinal subset in C(S) (see Lemma 2.3), from
Theorem 1.1 we can see that there must exist a compact Hausdorff space T
such that G is not proximinal in C(S x T).
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